

Making the most of your hatchery data. Using pivot tables to boost hatchery management

Almost every Hatchery manager assesses his results by collecting performance data such as hatchability, hatch of fertile, water loss, hatch debris, mortality patterns, percentage of culls and first week mortality.

But the best way of keeping track and using the information to manage the hatchery is by analyzing the data collected as a whole, identifying how each key performance indicator (KPI) is performing and checking how they are interrelated. There is no point in collecting vast quantities of data if you cannot then make good use of them. Keeping data on sheets of paper stored in desk drawers will not help you boost your KPI's.

Nowadays, with data collection being a routine component of day-old chick production, there are many sophisticated tools available to track the hatchery environment. Data loggers can collect real time data describing (for example) temperature, humidity or CO₂ using remote sensors and transmitting the information to a networked computer, a tablet or even a cell phone. However, no matter how much easier data collection has become, the information still needs to be summarized and used to correlate cause and effect.

The best way of summarizing all the data collected is by putting it into a database or spreadsheet in such a way that all the information can be analyzed as a whole, looking closely at details where necessary.

Excel is one of the most widely available programs for data analysis, and many people working in a hatchery will have some familiarity with it.

While not everybody uses them, it is full of surprisingly sophisticated tools for analyzing data, and can cope with very big data sets. As such, it can provide rich information for improving a hatchery's KPI's.

Avoid producing daily report sheets as they are difficult to analyze. A better way is to consolidate the data, and then use Pivot tables to control process and KPI's. (**Figure 1**).

Pivot tables allow the user to create any kind of report needed in order to evaluate different KPI's, machines or data loggers in one unique screen. Moreover they are easily manageable by any Excel user, just requiring a little training.

The most important step is making sure that your data is organized following a database layout as shown in Figure 2 (organized in columns, consistent naming, data within acceptable ranges, sensible data without errors).

Once set up to your satisfaction, Pivot tables can be used to generate dynamic graphs, updated each time the Pivot table is run. These can show data over several seasons, allowing the manager to evaluate trends which can be really helpful in Hatchery troubleshooting allowing the manager to compare different banks of setters/hatchers, individual machines as well as the seasonal variability which can so affect hatchery performance.

Once data driven performance management is implemented, it is possible to set targets, look at data as whole, monitor performance, analyze trends and differences and implement improvements in specific aspects which are affecting Hatchery performance.

Making the most of your hatchery data. Using pivot tables to boost hatchery management *Continued*

Figure 1 Example of how a Pivot table can combine different data.

The Pivot table is structured as follows:

			Values			
4	FLOCK	SETTER POSITION	EGG AGE	Sum of EGGS SET	Sum of Total Hatchability	Average of STD HATCHABILITY
5	▼ A	▼ BACK	9.00	3960.00	85.53	86.95
6			10.00	2631.00	85.41	86.95
7		▼ CENTER	8.00	3960.00	85.52	86.95
8			9.00	1320.00	83.78	85.27
9		▼ DOOR	6.00	3570.00	69.03	80.00
10			7.00	1320.00	85.31	86.12
11	**A Total**			**16761.00**	**81.87**	**85.37**
12	▼ B	▼ BACK	9.00	1315.00	85.40	86.95
13		▼ DOOR	6.00	4950.00	71.31	80.16
14	**B Total**			**6265.00**	**74.31**	**82.42**
15	▼ C	▼ DOOR	6.00	3960.00	77.55	80.31
16			10.00	4560.00	88.96	80.00
17	**C Total**			**8520.00**	**83.68**	**80.16**
18	▼ D	▼ DOOR	8.00	2629.00	77.35	80.91
19			10.00	2640.00	88.85	80.00
20	**D Total**			**5269.00**	**83.13**	**80.46**
21	▼ E	▼ BACK	7.00	1320.00	85.45	86.95
22			9.00	3960.00	85.52	86.95
23		▼ DOOR	8.00	2640.00	77.50	80.91
24						**84.94**

Figure 1 Example of a good data base layout for Excel.

The data base layout is structured as follows:

	1	PRODUC	SET DATE	TRANSFE	HATCH DATE	E	EGG AGE	F	FARM NAME	G	EGGS SET	ADJUST E	AGE	H	BREED	K	L	M	N	O	P
7	28-Jan	04-Feb	21-Feb		Monday, 25 February 19	7.00	F	XXXXXXXXXX		3960	3947	39	ROSS 308	3376	3271	13	9	DOOR			
8	25-Jan	04-Feb	21-Feb		Monday, 25 February 19	7.00	F	XXXXXXXXXX		2611	2619	39	ROSS 308	2237	2170	13	1	BACK			
9	28-Jan	04-Feb	21-Feb		Monday, 25 February 19	7.00	A	XXXXXXXXXX		3220	1391	39	ROSS 308	1117	1082	13	10	DOOR			
10	26-Jan	04-Feb	21-Feb		Monday, 25 February 19	8.00	A	XXXXXXXXXX		3960											
td>